

DoD Bridge Certification Authority Technology Demonstration

Lessons Learned - Future Plans

Federal Public Key Infrastructure Technical Working Group 5 April 2000

Dave Fillingham, NSA dwfilli@missi.ncsc.mil

Overview

- Phase I
 - Goals
 - Implementation
 - Results
 - Lessons Learned
- Phase II
 - Goals
 - Implementation
- Summary

Phase I - Goals

- Demonstrate the feasibility of the BCA concept
 - Implement a bridged PKI containing both hierarchical and mesh PKIs, based on existing or slightly modified CA products
 - Demonstrate the ability of messaging clients to successfully exchange and process digitally signed traffic using the Bridge CA

Phase I - Goals

- Demonstrate the Border Directory concept
- Develop reference implementation software
 - certificate path development
 - processing certificate path processing
 - Make this software freely available to accelerate application developments
 - Demonstrate the use of this software via integration into e-mail clients implementing S/MIME V3 clients

Phase I - Implementation

- Approximately ten month effort
 - March December 1999
 - Formal presentations started January 2000
- Nine Vendors worked as one team
 - Three CA vendors
 - Two Systems Engineering/Tech Support vendors
 - Two software development vendors
 - One directory vendor
 - One messaging application vendor

Phase I - Systems Engineering

- A&N Associates
 - Project Planning and Management
 - Overall Systems Engineering
 - Technical Interoperability Profile Development
 - Scenario Development
 - Final Report Development
- Booz-Allen and Hamilton
 - Certificate and CRL Development

Phase I - Infrastructure Components

- Motorola
 - Modified NSM/MISSI Certification Authority Workstation
- SPYRUS
 - $-S^2CA$
 - Provided SPYRUS Cards (Cryptographic Engine, Token)
- Entrust Technologies
 - Four CA mesh PKI
 - Four associated directory system agents
 - Entrust PKI toolkit
- Chromatix (Entegrity)
 - Directory System Agents
 - Directory expertise

Phase I - Software Development

- J.G. Van Dyke and Associates
 - Developed Certificate Management Library (CML)
 - Developed S/MIME Freeware Library (SFL)
 - Tested/Integrated demonstration in laboratory
 - Provided demonstration facilities
- CygnaCom Solutions
 - Developed Certificate Path Development Library (CPDL)
 - Integrated CPDL, CML, SFL into Eudora Client
 - Integrated Entrust Toolkit into Eudora Client (on behalf of Entrust)
 - Tested/Integrated demonstration in laboratory
 - Provided demonstration facilities

Phase I - Client Development

Raytheon

 Developed BCA enabled S/MIME E-Mail Client based on Novell Groupwise, SFL,CML, CPDL

Phase I - Technical Interoperability Profile

- IETF LDAP V2 Directory Schema
- RSA/MD5 Signatures
- S/MIME V3 Application Layer Security Protocol
- X.500 Directory Systems Protocol Chaining
- X.509 Certificates and Revocation Lists

Available Software Modules

- Certificate Path Development Library
 - Developed by Cygnacom
- Certificate Management Library
 - Developed by J.G. Van Dyke and Associates
- S/MIME Freeware Library
 - Developed by J.G. Van Dyke and Associates

Free Software

- Certificate Path Development Library
- http://www.cygnacom.com/cpl/
- Certificate Management Library
- http://www.armadillo.huntsville.al.us/software/certmgmt/index.html
- S/MIME Freeware Library
- http://www.armadillo.huntsville.al.us/software/smime/index.html

Phase I - Results

- BCA concept works at least in the lab!
 - Mix of mesh and hierarchical PKIs
 - Four different CA products
- Certificate paths are successfully built
 - Entrust toolkit
 - Certificate Path Development Library
- Certificate paths are successfully verified
- Directory chaining among Border Directories can be basis of directory interoperation

Phase I - Lessons Learned

- Ease of integrating required certificate processing functions varied greatly based on application architecture
- Directory interoperation can be difficult
 - Difficult but so far, always doable
 - Cross-vendor chaining requires careful directory configuration
 - Latent standards implementation errors can surface during cross-vendor directory integration

Phase I - Lessons Learned

- Dominant performance factor: Directory lookups
 - Approximate signature verification times "first time" (without caching) 5 10 seconds
 - Once certificate path is cached about 1 second
 - Vast majority of signature verifications will use cached chains
- Common error: setting path length constraints to 1 or 0
- Authority Key Identifier Useful extension, but if clients built based on a specific infrastructure's implementation, problems result

Phase I - Lessons Learned - Authority Key Identifier

FBCA's Forward Certs

Subject Name: FBCA Issuer Name: PCA1 Subj Key ID: 200 Auth Key ID: 100 Subject Name: FBCA Issuer Name: PCA2 Subj Key ID: <u>200</u> Auth Key ID: 300

Subject Name: PCA 1 Issuer Name: FBCA Subj Key ID: 400 Auth Key ID: 200

PCA 1's Forward Certs

Phase I - Lessons Learned - Authority Key Identifier

FBCA's Forward Certs

Subject Name: FBCA

Issuer Name: PCA1

Ser # 002

Subj Key ID:

Issuer: PCA1

Ser #: 002

Auth Key ID:

Issuer: PCA1

Ser #: 000

Subject Name: PCA 1

Issuer Name: FBCA

Ser # 100

Subj Key ID:

Issuer: PCA1

Ser #: 001

Auth Key ID:

Issuer: PCA1

Ser #: 002

Subject Name: FBCA

Issuer Name: PCA2

Ser #: 010

Subj Key ID:

Issuer: PCA2

Ser #: 000

Auth Key ID:

Issuer: PCA2

Ser #: 000

PCA 1's Forward Certs

Phase II - Goals

- Build on Phase I
- Add encryption (Ephemeral/Static DH, 3DES)
- Add key recovery
- Add Attribute Certificate based access control Based on SDN.801 (Security Policy Agility)
- Signature Algorithm Agility (RSA/DSS/SHA1/MD5)
- Client Certificate Policy Processing
- Name Constraint Processing
- Add Baltimore Technologies CA, Client
- Add web application with BCA authentication, Attribute Certificate access control

Summary

- Phase I a success!
- Integration with Federal BCA relatively simple
- CA product interoperation requires work, but can be done - Not the hardest part of the problem
- Directory product interoperation difficulty varies greatly - but can be done - and very effectively
- Clients can be enabled with freely available software
- Phase II to exercise every feature required for fully functional Federal PKI